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integration

the point (z1,u1,z1) ison this plane.

Let

P-N = C,.

Resxstivity ohm-cm

Fig. 4. Microstrip line loss versus resistivity of thediele6tric substrates.

e, = 11.7.

Then

R*N = Cl

or

C, –xN. – Yivu
L?!(x,y) = @(x,y) =

N.

1E12=
N.# +NJ

Nz, -
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The Electric-Dipole Resonances of Ring Resonators of’

Very High Permittivity

M. VERPLANKEN AND J. VAN BLADEL, FELLOW, IEEE

Absfracf—The lowest confined mode in a coaxial ring reso:aator

is investigated. Data are given about the Q of the mode, the eigen-

electric dipole at resonance, and the structure of the electric field

surrounding the resonator. The data are valid for high, but finite

values of c,.

I. INTRODUCTION

In a previous paper [1], Van Bladel has shown that a dielectric

body of revolution [Fig. 1 (a)] admits, in the limit e, = Nz --+ co, a

resonant mode of the form

H~ = f?~(r,z)il.+ (1)

where & satisfies

In addition, L?%vanishes on the outer contour (c) and on the

z axis. The mode under discussion is a conjtned mode, which means

that it takes the value (1) in the dielectric, but vanishes outside S.

For such a case the boundary surface acts as a magnetic wall. ‘When

N is finite but large, the mode is found to radiate like an electric

dipole of moment j%. As a result, energy is lost by radiation, and a

finite Q affects the resonance. The value of Q is proportional with

NS, while it is proportional with N3 for a magnetic-dipole mode. The

strong increase of Q with N is the reason why the electric-dipole

mode is of interest for applications. We proceed to calculate & and

Q for the ring resonator shown in Fig. 1 (b). The limit form b = O

corresponds to a circular cylinder, a structure which is often used in

practice.

II. FORMULAS FOR DIPOLE MOMENT AND “Q

The determination of these quantities requires solution of the

following exterior potential problem [1]

v’+ = O outside S
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Eig. 1. (a) Dielectric resonator with symmetry of revolution. (b)

Coaxial ring resonator.
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z “
on (c) (3)

jkfi an

+.A~ at large distances

o = o on the z axis.

As d depends &ly on r and z, the first equation takes the form

(4)

The second condition, where R. is the characteristic impedance of

freespace) expresses continuity of thetangential electric fieldon (c).

The third condition, where the integral is over the ring boundary

surface &, expresses charge neutrality. The fourth condition, where

A is a still undetermined factor, implies that @ is the potential

created by an electric dipole. The sought quantities, p. and Q, are

given in terms of @ by

//$,,s-/’+..,.]

//
@’r dfl

12T2N8 ‘
,

Q=—
~m8c2 ~ IP. I’ “

III. FORMULATION OF THE RING-RESONATOR

PROBLEM

(5)

(6)

‘ With reference to the geometry of Fig. 1 (b), the general solution

for p is of the form

()$.s = % sin ‘~zR% z~. ~ , (B., in Am-’) (7)
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where R. is a solution of Bessel’s equation. We write R* as

R.(z) = ~n(Z) + Cn,Y.’(Z). (8)

The parameter z is quantized by the boundary conditions

R. (G,) == O, (condition ~ = O for r = a)

( )
R. ; Z., = o, (condition p = O for r = b) (9)

and the resonant wavenumber follows from

‘.2=(3+(3 (lo)

We shall concentrate our attention on the lowest n = 1 mode.

Here, x is determined by the condition

(11)

The roots of this “coaxial-line” type of secular equation are well

known [2]. Some of them are given in Table I, to{;ether with Cl,,

and the value of BII which gives a maximum vahm of +1 A. m–l

for ~11 (i.e., for l?dii) in the dielectric cross section S. The Neumann

function Y, is defined as in [3].

A sketch of the variation of xl, with b/a is shown on Fig 2. The

boundary conditions of the differential problem are specifically

(Fig. 3):

1) in A and to the right of A (along the z = L/2 axis), C$= O;

2) between A and B

where

R,(z) = Jo(z) + 6’HYo(z)

TABLE I
.—

I b/a
I I

-1)
’11 %1 % 1 ‘&A’m

I o 3.8317 O
I

1.718:,
0.25 4.4475 O .6887 1.665

I I0,50 6.3932

I

-0.7099
I

-2.208
0.75 12.6056 -0.8709 -3.131
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xl 1

5
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1
0 Q2s Oso &~

b/a

Fig. 2. Plot of the quantized parameter z,,, as introduced in (11).
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L
(such as Newton’s 3 rule, combined with Simpson’s rule). Some of

the more interesting numerical results are shown in Figs. 4-6. In

(c, )
Fig. 4 we have shown the potential distribution for two typical

/---- geometries. Theplotted function isnotthe potential itself, but the
,’

;>4-- dimensionless expression
,’ c
I

El: ‘ 2 z=L/2
, ,---..: 1’

./~ ‘(::::)=~~oaf~:m-) “ ’15)‘.
-------

Fig. 3. Relevant to the definition of the differential problem.
where 4n0,~ is the potential associated with the normed eigen-

function, i.e., with the value of B1l appearing in Table I. The value

of the potential for an arbitrary ~U is then simply

311 between Band C

4:1 between Dand C

xnL ‘7rZ

()

b
@ =jR,BII——— COS— RO XII–

dclla L a

B,,
— jR.ar.

4= (Bn)norm

4isinvolts, R,inohms, a in meters, andristhe number read from

Fig. 4. The full lines represent theequipotential lines. The dashed

lines aretheequipotentialsof the dipole moment p., assumed con-

+ jR,Bl,
%[RO(xl’:)-RO(x’l)l

5’) inD, and between Dand E

4 = jR,B,,
ZIR”F’:FR”’X’”l

The potential 4 generates the external electric field through the

formula

E = ~gradd. (12)

This value holds in the ‘(near” region, i.e., up to distances small

compared with the wavelength in free space, which is

Itistobe noticed that 4is multiple valued, ascurl~is zero outside

the dielectric, but different from zero inside. As a result, $~ o~ # O

foracurve surrounding the dielectric (such as C1in FM .3). ThiSiS
thereason why@ hasdifferent values inA and D.

Iv. NUMERICAL RESULTS

After consideration of several methods, we decided to solve the

differential problem (3) by finite differences, as the shape of the

boundary is particularly suitable for the purpose [4]. The matrix

problem wassolved bysuccessive overrelaxation methods [5]. The

boundary condition at large distances was applied in the form

“4proportionalwith cos L9/Rl” as shown in (3). One could replace

this condition by the requirement that @vanish along a large circle

(of radiusli = 10a for example). Itwasfound that this step was

too drastic and resulted in poor convergence. The potential at large

distances is related to the electric moment by

(14)

The sought value of p. can therefore be obtained either by observ-

ingthebehavior of4atlarge distances [and deducing p, from (14)],

or by taking the values of 4 and a4/dn at the dielectric boundary

into account, as in (5). It was found that the second method gave

considerably better results for a given net size, provided the values

of a@/dnwere evaluated bycarefully selected interpolation methods

—

(a)

r
—

Fig. 4.

(b)

Potential distribution for two particular geometries.
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Fig. 5. Plot of thedimensionless factor a,as introducedin (16).

Fig. 6. L? factor of the ring resonator,

centrated at the center of the resonator. Both equipotentials tend

to coincide at large distances.

Inserting T,in (5) allows onetowrite p.in the form

SW

Here again, p.isthe value corresponding to thenormed eigenfunc-

tion. The quantity between brackets is dimensionless, and is a

function of b/a and L/2a. It will be denoted by atie, and its magni-

tudeisplotted in Fig. 5. Thedipole moment for an arbitrary value

of B1l is

ja’ - BII

“= ‘~auz(B,,)..rm”

p,isin C.m–l, a in meters, andcinm.s–l.

From the knowledge of p,it is asimple matter to determine Q

through (6). The results areshown in Fig. 6. For comparison, we

have shown the Qfactorof e, sphere of radius a, resonating in the

loweet $-independent confined mode

(sinkR
Hm = sin O

COS kR

)
—–k—R, R

%

where ka = 4.49.

(17)

V. SAMPLE CALCULATION

We wish to utilize a material of ~, = 144 to design a resonator

which resonates at 1500 MHz and has optimum Q. We also wish to

investigate the value of the induced fields and p, at rw,onance when

the resonator is illuminated with a plane wave of electric field parallel

with the axis of the resonator.

A look at Fig. 6 shows that maximum Q is obtained for b/a = O
(i.e., for a circular cylinder), and L/2a = 0.45. The value of Q is

0.0086NJ = 2140. The wavelength in the dielectric is

The dimensions can now be derived from (10), i.e., from the rela-

tionship

This gives a = 1.375 cm and L = 1.238 cm. The induced dipole

moment at resonance is [6]

. 6UN% -
— Ei = –j 5.3 10-15E; C-m

‘“ = ‘J ~k,,)’
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where Ii is the incident electric field in V.m–l. The induced mag-

neticfield inthe resonator is, again atresonance[ 6],

H=–p~e ()(B11)..,~sin~2R1 XII: I%
Ifd’

()
=3.96 sin~z J, 3.8317: E&

asp. = —j(a3/Nc)a& The value of a, read off on Fig. 6, is 3.14.
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Resonant Frequency of a TEOI;O Dielectric Resonator

YOSHIHIRO KONISHI, NORIO HOSHINO,

AND YOZO UTSUMI

Absfracf—The resonant frequency of a TEOIJO dielectric resonator

was obtained by assuming a cylindrical surface containing the cir-

cumference of a dielectric resonator as a magnetic wall. In such a

method, the error was less than 10 percent. Inthisshort paper, the

resonant frequency is obtained by a variational method, where the

surf ace impedance is variated from a infinite value [1]. The theoreti-

cal value of a resonant frequency has a good agreement with our

experimental result with an error less than 1 percent.

I. INTRODUCTION

In the past, the resonant frequency of a dielectric resonator was

obtained by assuming a cylindrical surface containing the circum-

ference of a dielectric resonator as a magnetic wall [2], and with

thk method error was less than 10 percent between the theoretical

values and the experimental ones. .

Yee [3] obtained the modified open-circuit boundary (OCB) ap-

proximation method for TEw” mode but he assumed a cylindrical

surface as a magnetic wall, and he obtained the variational method

for TM,~m mode, but he assumed two flat surfaces as a magnetic wall.

In our method, however, we do not assume only a cylindrical

surface but also two flat surfaces as a magnetic wall. We assume the

exponential decay in the z direction, and variate the surface imped-

ance from a infinite value.
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In the case where the sectional areas of a cylindrical dielectric

resonator face the metal plates at a short dktance as shown in Fig.

1 (a) (as in the case of microwave integrated circuit (MIC) use, for

example), the assumption of a magnetic wall mentioned before is

quite reasonable because the RF field of the resonator is in parallel

to the metal plates and crosses the cylindrical surface almost verti-

cally. However, in the case where the resonator is placed in a free

space or the distance between the resonator and the metal plates

becomes large, the parallel component of the RF field approaches

the axis of a resonator. Thk does not satisfy a magnetic wall assump-

tion. The situation is shown in Fig. 1 (b).
/

II. THEORETICAL VALUES BY MAGNETIC WALL

APPROXIMATION

When assuming the surf ace iSO to be a magnetic wall as shown ifi

Fig. 2, the resonant frequency can be obtained from (1)

Ic,.tan (kJ/2) = a J,(kPa) = O

lc,z + k./ = e,koz koz – CJ = koz

where kg is a propagation constant in a dielectric region along the z

axis, a is a damping constant in an air region inside a space sur-

rounded by & along the axis, k. ‘is a wavenumber along a radks,

and ko is a free-space wavenumber.

III. THEORETICAL VALUES OBTAINED BY A

VARIATIONAL METHOD

We assume the trial scalar functions internal to SO to be 41~and 410

qhs = Jo (k./)) COS(k#) (in dielectric)

+1. = w (42) Cos[kz (W) IJo (%) =p ( –~ I z 1) (in air:). (2)

In this case, the wall admittance Y, can be expressed by (3) using

the scalar function of (2)

conducting wall

//////////,/, [magnet ic---,,, ~,<~-

}

,Z-— — —., ,. -—— f lUX I ‘. /’ ;
,.--— , f
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I?ig. 1. Magnetic flux for TEo15” mode. (a) Near the conducting wall. (b)

In free space.
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Fig. 2. Cylindrical coordinate s3-stem for dielectric cylinder.


