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Microstrip line loss versus resistivity of the dielectric substrates.
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the point (z1,y1,21) is on this plane.
Let :

P-N = C,.
Then
R-N=(,
or
zNy + yNy + 2N, = C1

Cy — zN, — yNy
N,

z2(z,y) = ®(z,y) =
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The Electric-Dipole Reso;lances of Ring Resonators of
Very High Permittivity

M. VERPLANKEN axD J. VAN BLADEL, FELLOW, IEBE

Abstract—The lowest confined mode in a coaxial ring resonator
is investigated. Data are given about the @ of the mode, the eigen-
electric dipole at resonance, and the structure of the electric field
surrounding the resonator. The data are valid for high, but finite
values of e.

I. INTRODUCTION

In a previous paper [17], Van Bladel has shown that a dielectric
body of revolution [Fig. 1(a)] admits, in the limit ¢, = N2 — o, a
resonant mode of the form

Hm = Bm("'}z)ad’ (1)
where 3,, satisfies
P 10Bn  Bn  Bn ., .
= = 2 o kB = : 2
ar? r or + 922 72 + S 0 in 8 @)

In addition, 8, vanishes on the outer contour (¢) and on the
z axis. The mode under discussion is a confined mode, which means
that it takes the value (1) in the dielectric, but vanishes outside S.
For such a case the boundary surface acts as a magnetic wall. When
N is finite but large, the mode is found to radiate like an electric
dipole of moment p.. As a result, energy is lost by radiation, and a
finite  affects the resonance: The value of @ is proportional with
N3, while it is proportional with N3 for a magnetic-dipole mode. The
strong increase of @ with N is the reason why the electric-dipole
mode is of interest for applications. We proceed to calculate p. and
Q for the ring resonator shown in Fig. 1(b). The limit form b = 0
cotresponds to a circular cylinder, a structure which is often used in
practice. '

II. FORMULAS FOR DIPOLE MOMENT AND @

The determination of these quantities requires solution of the
following exterior potential problem [1]

V2 = 0 outside S
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Fig. 1. (a) Dielectric resonator with symmetry of revolution. (b)

Coaxial ring resonator.
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¢ = 0 on the z axis.

on (¢ )

As ¢ depends bnly on r and #, the first equation takes the form

¢  lag 9%

ar? r ar 922 =0 (4)

The second condition, where R, is the characteristic impedance of
free space, expresses continuity of the tangential electric field on (c).
The third condition, where the integral is over the ring boundary
surface Sy, expresses charge neutrality. The fourth condition, where
4 is a still undetermined factor, implies that ¢ is the potential
created by an electric dipole. The sought quantities, p. and @, are
given in terms of ¢ by

Uf Fas — ffw,,ds}l : <5>‘

/ BgrdS

_ 1272N3 ¢
Tk | pelr

(6)
III. FORMULATION OF THE RING-RESONATOR
‘ .PROBLEM

" With reference to the geometry of Fig. 1(b), the general solution
for 3 is of the form

Bus = Buosin = R,, <xmr>, (Bps in A-m™) (7)
L a)
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where R, is a solution of Bessel’s equation. We write B, as
Ru(2) = Jn(2) + Cos¥a(2). (8)
The parameter z is quantized by the boundary conditions
Rn(zns) =0, (condition g8 =0 for r = a)
R, <§ z,m) = 0, (condition g8 =10 for r =2b) ()]
a .
and the resonant wavenumber follows from
nr\? Tns\”
ko = | — —]. 10
() + () a

We shall concentrate our attention on the lowest n = 1 mode.
Here, « is determined by the condition

Ji <é xu)
A(en) :
Yi(zn) b ’
Y <— xu)
Q

The roots of this “coaxial-line’” type of secular equation are well
known [2]. Some of them are given in Table I, together with Cy,
and the value of By which gives a maximum value of +1 A-m™
for 811 (i.e., for B Ry) in the dielectric cross section S. The Neumann
function Y, is defined as in [3]. ‘

A sketch of the variation of zi; with b/a is shown on Fig 2. The
boundary conditions of the differential problem are specifically
(Fig. 3):

(11)

{

1) in A and to the right of A (along the z = L/2 axis), ¢ = 0;
2) between A and B

Lz,
¢ = jR.By— cos-—Ro(xu)
e 0 L
where
R, (Z) = Jo(z) + CuYo(z)
TABLE I
b/a x c B ('A'm'l)
11 11 11
o | 3.8317 o 1.7185
0.25| 4.4475 0 6887 1,665
0,50} 6.,3932 -0.7099 -2,208
0.75412.6056 -0 8709 -3.131
- 15
10
*1n
5
0 azs 050 o755
Y%
Fig. 2. Plot of the quantized parameter 21, as introduced in (11).



110 -

Fig. 3. Relevant to the definition of the differential problem.

3) between B and C
kuLa

¢‘—.7RBH[ R( 1z>
kuzi L a Ty

4) between D and C

L b
¢ = jR.Bu Inz cos ik Ry '(I&u ‘>
7I'k11a L a

kL b
+ jR. Bu et [Ro (Zu g) - RO(fCu)]

5) in D, and between D and E

kL b ‘
¢ = jR.Bu lx ¢ I:Ro (3311 ) — Ry (xn)] .
11

The potentlal ¢ generates the external elec’mc field through the
formula

Ry (xu)]

_ 1
E = —grad ¢.

% (12)

This value holds in the “near’’ region, i.e., up to distances small
compared with the wavelength in free space, which is

2 2
b= NMag=N— =N ——""——. (13

CE-ET

It is to be noticed that ¢ is multiple valued, as curl E is zero outside.

the diglectric, but different from zero inside. As a result, fE-dl = 0
for a eurve surrounding the dielectric (such as C; in Fig. 3). This is
the reason why ¢ has different values in A and D.

IV. NUMERICAL RESULTS

After consideration of several methods, we decided to solve the
differential problem (3) by finite differences, as the shape of the
boundary is particularly suitable for the purpose [4]. The matrix
problem was solved by successive overrelaxation methods [5]. The
boundary condition at large distances was applied in the form
“o proportional with cos 8/R?’ as shown in (3). One could replace
this condition by the requirement that ¢ vanish along a large circle
(of radius B = 10a for example). It was found that this step was
too drastic and resulted in poor convergence. The potential at large
distances is related to the electric moment by

cos 6 _ Pe COS 6~
R? 4reR?

p=4 (14)

The sought value of p. can therefore be obtained either by observ-
ing the behavior of ¢ at large distances [and deducing p. from (14) ],
or by taking the values of ¢ and 9¢/dn at the dielectric boundary
into account, as in (5). It was found that the second method gave
considerably better results for a given net size, provided the values
of 9¢/0n were evaluated by carefully selected interpolation methods
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(such as Newton’s $ rule, combined with Simpson’s rule). Some of
the more interesting numerical results are shown in Figs. 4-6. In
Fig. 4 we have shown the potential distribution for two typical
geometries. The plotted funetion is not the potential 1tself but the
dimensionless expression

¢norm

T jRa-(1 A-m) (15)

where ¢norm i5 the potential associated with the normed eigen-
function, i.e., with the value of By appearing in Table I. The value
of the potential for an arbitrary By is then simply

¢ = Bu iR
aT.
(Bu)norm] °
¢ is in volts, B, in ohms, @ in meters, and 7 is the number read from
Fig. 4. The full lines represent the equipotential lines. The dashed
lines are the equipotentials of the dipole moment p., assumed con-
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Fig. 4. Potential distribution for two particular geometries.
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Fig. 6. @ factor of the ring resonator.

centrated at the center of the resonator. Both equipotentials tend
to coincide at large distances. ‘
Inserting 7.in (5) allows one to write p. in the form

iad r  F\dS
_%[/f (u~af%—)£> a—2] X (1 A-m). (16)

Here again, p. is the value corresponding to the normed eigenfunc-
tion. The quantity between brackets is dimensionless, and is a
function of /a and L/2a. It will be denoted by a#., and its magni-
tude is plotted in Fig. 5. The dipole moment for an arbitrary value
of Bu is

De =

ja3 7 Bu
T, U T .
NC (Bll)norm

Pe = —

Do is in C-m™Y @ in meters, and ¢ in m«s~2.

From the knowledge of p. it is a simple matter to determine @
through (6). The results are shown in Fig. 6. For comparison, we
have shown the @ factor of a sphere of radius a, resonating in the
lowest ¢-independent confined mode

’ (sin kR

H, =sine iy Q7

_, cos kR
R? R

where ka = 4.49.

V. SAMPLE CALCULATION

We wish to utilize a material of ¢ = 144 to design a resonator
which resonates at 1500 MHz and has optimum Q. W also wish to
investigate the value of the induced fields and p. at resonance when
the resonator is illuminated with a plane wave of electriz field parallel
with the axis of the resonator.

A look at Fig. 6 shows that maximum @ is obtained for b/a = 0
(i.e., for a circular cylinder), and L/2a = 0.45. The value of Q is
0.0086N3 = 2140. The wavelength in the dielectric is

_ The dimensions can now be derived from (10), i.e., from the rela~

/tionship
- 7\ 3.8317\? 27 \?
k2 =1{— = .
" (L) +< a ) (Mia)

This gives a = 1.375 em and L = 1.238 cm. The induced dipole
moment at resonance is [6]

5 L 61rN3e

Po= —j—
NTHE

B, = —j53108E;, C-m
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where E; is the incident electric field in V.m™. The induced mag-
netic field in the resonator is, again at resonance [6],
- P e* Pe
i _ p

| Be 1>

T
(Bll)norm Sln Rl <x11 ;) 724:

. TR r
3.96 sin — Jl <3.8317 _> Elﬁd,
L a

as po = —j(a®/Ne)ai,. The value of o, read off on Fig. 6, is 3.14.
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Resonant Frequency of a TEy,° Dielectric Resonator

YOSHIHIRO KONISHI, NORIO HOSHINO,
anp YOZO UTSUMI

Abstract—The resonant frequency of a TEq;° dielectric resonator
was obtained by assuming a cylindrical surface containing the cir-
cumference of a dielectric resonator as a magnetic wall, In such a
method, the error was less than 10 percent. In this short paper, the
resonant frequency is obtained by a variational method, where the
surface impedance is variated from a infinite value [1]. The theoreti-
cal value of a resonant frequency has a good agreement with our
experimental result with an error less than 1 percent.

I. INTRODUCTION

In the past, the resonant frequency of a dielectric resonator was
obtained by assuming a cylindrical surface containing the circum-
ference of a dielectric resonator as a magnetic wall [27], and with
this method error was less than 10 percent between the theoretxcal

“values and the experimental ones.

Yee [3] obtained the modified open-circuit boundary (OCB) ap-
proximation method for TE;.® mode but he assumed a cylindrical
surface as a magnetic wall, and he obtained the variational method
for TMyn, mode, but he assumed two flat surfaces as a magnetic wall.

In our method, however, we do not assume only a cylindrical
surface but also two flat surfaces as a magnetic wall. We assume the
exponential decay in the z direction, and variate the surface 1mped-
ance from a mﬁmte Value

Manuscript received May 5, 1975; revised August 5, 1975.
The authors ‘are with the NHK Technical Research Laboratories,
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In the case where the sectional areas of a cylindrical dielectric
resonator face the metal plates at a short distance as shown in Fig,
1(a) (as in the case of microwave integrated circuit (MIC) use, for
example), the assumption of a magnetic wall mentioned before is
quite reasonable because the RF field of the resonator is in parallel
to the metal plates and crosses the cylindrical surface almost verti-
cally. However, in the case where the resonator is placed in a free
space or the distance between the resonator and the metal plates
becomes large, the parallel component of the RF field approaches
the axis of 'a resonator. This does not satisfy a magnetic Wall assump-
tion. The situation is shown in Fig. 1(b).

II. THEORETICAL VALUES BY MAGNETIC WALL
APPROXIMATION '

When assuming the surface So to be a magnetic wall as shown in
Fig. 2, the resonant frequency can be obtained from (1)

kootan (k.1/2) = a Jo(ke) =0

B+ kbt = ekt kp — af = kot

ko == (,v.\o(é(),bto)ll2 Xy = 27ra/)\ E = l/2a (1)
where k. is a propagation constant in a dielectric region along the 2
axis, « is a damping constant in an air region inside a space sur-
rounded by S, along the axis, k,'is & wavenumber along a radius,
and ko is a free-space wavenumber.

III. THEORETICAL VALUES OBTAINED BY A
VARIATIONAL METHOD

We assume the trial sealar functions internal to Sy to be ¢12 and ¢1a

d1a = Jo(kpp) cos (k.2) (in dielectric)

$1a = exp (al/2) cos[k.(1/2) Wo(kwp) exp (—a|2]) (inair). (2)
In this case, the wall admittance ¥, can be expressed by (3) using
the scalar function of (2)
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Fig. 1. Magnetic flux for TEd° mode. (a) Near the conducting wall. (b)

In free space.
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